Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Braz J Anesthesiol ; : 844513, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740135

RESUMO

There is growing interest in using cannabinoids across various clinical scenarios, including pain medicine, leading to the disregard of regulatory protocols in some countries. Legislation has been implemented in Brazil, specifically in the state of São Paulo, permitting the distribution of cannabinoid products by health authorities for clinical purposes, free of charge for patients, upon professional prescription. Thus, it is imperative to assess the existing evidence regarding the efficacy and safety of these products in pain management. In light of this, the São Paulo State Society of Anesthesiology (SAESP) established a task force to conduct a narrative review on the topic using the Delphi method, requiring a minimum agreement of 60% among panelists. The study concluded that cannabinoid products could potentially serve as adjuncts in pain management but stressed the importance of judicious prescription. Nevertheless, this review advises against their use for acute pain and cancer-related pain. In other clinical scenarios, established treatments should take precedence, particularly when clinical protocols are available, such as in neuropathic pain. Only patients exhibiting poor therapeutic responses to established protocols or demonstrating intolerance to recommended management may be considered as potential candidates for cannabinoids, which should be prescribed by physicians experienced in handling these substances. Special attention should be given to individual patient characteristics and the likelihood of drug interactions.

2.
Clinics (Sao Paulo) ; 79: 100345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38513297

RESUMO

BACKGROUND: The antiemetic effectiveness of olanzapine, as a prophylactic off-label antiemetic drug, for Postoperative Nausea and Vomiting (PONV) is unknown. In this systematic review and meta-analysis, the authors evaluate the efficacy and side effects of olanzapine as a prophylactic antiemetic in adult patients who undergo general anesthesia and assess adverse effects. METHODS: A systematic search was done on electronic bibliographic databases in July 2023. Randomized controlled trials of olanzapine as a prophylactic antiemetic for PONV in adults who underwent general anesthesia were included. The authors excluded non-RCTs and retracted studies. The authors set no date of publication or language limits. The outcomes were the incidence of PONV within 24 h postoperatively and the safety of olanzapine. The risk of bias was assessed according to the tool suggested by the National Heart, Lung, and Blood Institute. RESULTS: Meta-analysis included 446 adult patients. Olanzapine reduced on average 38 % the incidence of PONV. The estimated risk ratio (95 % CI) of olanzapine versus control was 0.62 (0.42-0.90), p = 0.010, I2 = 67 %. In the subgroup meta-analysis, doses of olanzapine (10 mg) reduced on average 49 % of the incidence of PONV (RR = 0.51 [0.34-0.77], p = 0.001, I2 = 31 %). CONCLUSIONS: This systematic review with meta-analysis indicated that olanzapine as a prophylactic antiemetic alone or combined with other antiemetic agents reduced the incidence of postoperative nausea and vomiting. However, this conclusion must be presented with some degree of uncertainty due to the small number of studies included. There was a lack of any evidence to draw conclusions on side effects.


Assuntos
Antieméticos , Adulto , Humanos , Antieméticos/uso terapêutico , Náusea e Vômito Pós-Operatórios/prevenção & controle , Náusea e Vômito Pós-Operatórios/induzido quimicamente , Náusea e Vômito Pós-Operatórios/tratamento farmacológico , Olanzapina/efeitos adversos , Anestesia Geral/efeitos adversos
3.
Int J Pharm ; 654: 123959, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430949

RESUMO

DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.


Assuntos
COVID-19 , Nanopartículas , Vacinas de DNA , Humanos , Polietilenoimina/química , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Transfecção , DNA , Células Apresentadoras de Antígenos , Colesterol , Nanopartículas/química
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279254

RESUMO

Antimicrobial resistance has become a major problem over the years and threatens to remain in the future, at least until a solution is found. Silver nanoparticles (Ag-NPs) and antimicrobial polymers (APs) are known for their antimicrobial properties and can be considered an alternative approach to fighting resistant microorganisms. Hence, the main goal of this research is to shed some light on the antimicrobial properties of Ag-NPs and APs (chitosan (CH), poly-L-lysine (PLL), ε-poly-L-lysine (ε-PLL), and dopamine (DA)) when used alone and complexed to explore the potential enhancement of the antimicrobial effect of the combination Ag-NPs + Aps. The resultant nanocomplexes were chemically and morphologically characterized by UV-visible spectra, zeta potential, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Moreover, the Ag-NPs, APs, and Ag-NPs + APs nanocomplexes were tested against Gram-positive Staphylococcus aureus (S. aureus) and the Gram-negative Escherichia coli (E. coli) bacteria, as well as the fungi Candida albicans (C. albicans). Overall, the antimicrobial results showed potentiation of the activity of the nanocomplexes with a focus on C. albicans. For the biofilm eradication ability, Ag-NPs and Ag-NPs + DA were able to significantly remove S. aureus preformed biofilm, and Ag-NPs + CH were able to significantly destroy C. albicans biofilm, with both performing better than Ag-NPs alone. Overall, we have proven the successful conjugation of Ag-NPs and APs, with some of these formulations showing potential to be further investigated for the treatment of microbial infections.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Polímeros/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Methods Mol Biol ; 2652: 21-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093468

RESUMO

Cervical cancer has been extensively associated with human papillomavirus (HPV) due to the expression of oncoproteins such as E6. This protein can interfere with p53 tumor suppressor activity, blocking apoptosis of abnormal cells. The functional inhibition of E6 protein is a promising therapeutic strategy for HPV-induced cancers. Conducting biointeraction and characterization studies between E6 protein and potential anti-HPV drugs is necessary to obtain large quantities of high-purity and soluble E6 protein. The recombinant production of E6 protein is particularly challenging because it tends to aggregate. One way to circumvent this problem is to use a dual MBP-His6 tag that can facilitate the expression, proper folding, and solubility of the E6 protein. This chapter outlines effective methods for expressing and obtaining E6 protein with a dual affinity tag by combining different chromatographic methods.


Assuntos
Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Oncogênicas Virais/metabolismo
7.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986797

RESUMO

Quercetin is a natural flavonoid with high anticancer activity, especially for related-HPV cancers such as cervical cancer. However, quercetin exhibits a reduced aqueous solubility and stability, resulting in a low bioavailability that limits its therapeutic use. In this study, chitosan/sulfonyl-ether-ß-cyclodextrin (SBE-ß-CD)-conjugated delivery systems have been explored in order to increase quercetin loading capacity, carriage, solubility and consequently bioavailability in cervical cancer cells. SBE-ß-CD/quercetin inclusion complexes were tested as well as chitosan/SBE-ß-CD/quercetin-conjugated delivery systems, using two types of chitosan differing in molecular weight. Regarding characterization studies, HMW chitosan/SBE-ß-CD/quercetin formulations have demonstrated the best results, which are obtaining nanoparticle sizes of 272.07 ± 2.87 nm, a polydispersity index (PdI) of 0.287 ± 0.011, a zeta potential of +38.0 ± 1.34 mV and an encapsulation efficiency of approximately 99.9%. In vitro release studies were also performed for 5 kDa chitosan formulations, indicating a quercetin release of 9.6% and 57.53% at pH 7.4 and 5.8, respectively. IC50 values on HeLa cells indicated an increased cytotoxic effect with HMW chitosan/SBE-ß-CD/quercetin delivery systems (43.55 µM), suggesting a remarkable improvement of quercetin bioavailability.

8.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839894

RESUMO

Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.

9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768273

RESUMO

This work demonstrates the potential of calcium- and nickel-crosslinked Gellan Gum (GG) microspheres to capture the Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) directly from complex Komagataella pastoris mini-bioreactor lysates in a batch method. Calcium-crosslinked microspheres were applied in an ionic exchange strategy, by manipulation of pH and ionic strength, whereas nickel-crosslinked microspheres were applied in an affinity strategy, mirroring a standard immobilized metal affinity chromatography. Both formulations presented small diameters, with appreciable crosslinker content, but calcium-crosslinked microspheres were far smoother. The most promising results were obtained for the ionic strategy, wherein calcium-crosslinked GG microspheres were able to completely bind 0.1% (v/v) DM solubilized STEAP1 in lysate samples (~7 mg/mL). The target protein was eluted in a complexed state at pH 11 with 500 mM NaCl in 10 mM Tris buffer, in a single step with minimal losses. Coupling the batch clarified sample with a co-immunoprecipitation polishing step yields a sample of monomeric STEAP1 with a high degree of purity. For the first time, we demonstrate the potential of a gellan batch method to function as a clarification and primary capture method towards STEAP1, a membrane protein, simplifying and reducing the costs of standard purification workflows.


Assuntos
Cálcio , Níquel , Masculino , Humanos , Microesferas , Próstata , Polissacarídeos Bacterianos/química
10.
Br J Nutr ; 130(4): 564-574, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36268733

RESUMO

Overexposure to Se is detrimental to glucose metabolism, mainly because of its pro-oxidant effects and the overexpression of selenoproteins. This systematic review evaluated the effects of Se supplementation on glycaemic control in healthy rodents. The methodology followed the PRISMA. We searched the databases for articles published up to May 2022. The risk of bias and the methodological quality were assessed using the SYRCLE and CAMARADES. The results are presented as meta-analytic estimates of the overall standardised mean difference (SMD) and 95 % CI. Of the 2359 records retrieved, thirteen studies were included, of which eleven used sodium selenite and two used zero-valent Se nanoparticles as supplement. Nine studies were included in the meta-analysis. Generally, the risk of bias was high, and 23·1 % of the studies were of high quality. Supplementation with sodium selenite significantly increased fasting blood glucose (SMD = 2·57 (95 % CI (1·07, 4·07)), I2 = 93·5 % (P = 0·001). Subgroup analyses showed effect size was larger for interventions lasting between 21 and 28 d (SMD = 25·74 (95 % CI (2·29, 9·18)), I2 = 96·1 % (P = 0·001)) and for a dose of 864·7 µg/kg/d of sodium selenite (SMD = 10·26 (95 % CI (2·42, 18·11), I2 = 97·1 % (P = 0·010)). However, it did not affect glutathione peroxidase activity (SMD = 0·60 (95 % CI (-0·71, 1·91)), I2 = 83·2 % (P = 0·37)). The current analysis demonstrated the adverse effects of sodium selenite supplementation on glycaemic control in healthy rodents.


Assuntos
Selênio , Selênio/farmacologia , Selenito de Sódio/farmacologia , Controle Glicêmico , Suplementos Nutricionais , Antioxidantes/farmacologia
11.
BrJP ; 6(supl.2): 97-102, 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1513801

RESUMO

ABSTRACT BACKGROUND AND OBJECTIVES: This article aimed to discuss and point out the main gaps and bottlenecks in national and international clinical research regarding medicinal cannabinoid compounds and their respective relevance to pain management practices. Other objectives were to establish standards and regulations for testing the quality, efficacy, and safety of cultivation and manufacturing of cannabis products (similar to biopharmaceutical standards) before prescribing or marketing, and to investigate approaches in order to establish robust guidelines for cannabinoid-influenced driving. CONTENTS: A search with the terms "cannabinoids" and "pain" in the domain www.clinicaltrials.gov, international data platform for registration of clinical research trials, found only two Brazilian studies, on fibromyalgia and chronic headache. The search for the term "cannabinoid" in Plataforma Brasil returned only nine mentions of studies related to pain, most of them being case reports or observational studies, without active intervention or control group. CONCLUSION: There are still few clinical, randomized, controlled trials evaluating effective doses, routes and interval of administration, pharmacological interaction with opioids or among the various cannabinoids, interaction with adjunct analgesics, potential injury in the context of long-term use, and individual factors that predispose to indiscriminate cannabinoid use.


RESUMO JUSTIFICATIVA E OBJETIVOS: O presente artigo teve como objetivo debater e apontar as principais lacunas e gargalos na pesquisa clínica nacional e internacional relativas aos compostos canabinoides de uso medicinal e suas respectivas relevâncias nas práticas relacionadas ao controle da dor. Outros objetivos foram estabelecer padrões e regulamentos para testar a qualidade, eficácia e segurança de cultivo e fabricação de produtos de cannabis (semelhantes aos padrões biofarmacêuticos) antes de prescrever ou comercializar, e investigar abordagens a fim de estabelecer orientações robustas para dirigir sob influência de canabinoides. CONTEÚDO: Uma pesquisa com os termos "canabinoides" e "pain" no domínio do www.clinicaltrials.gov, plataforma internacional de dados de registro de ensaios de pesquisa clínica, cita apenas dois estudos brasileiros, sobre fibromialgia e cefaleia crônica. A busca do termo "canabinoide" na Plataforma Brasil retornou apenas nove menções de estudos relacionados ao tema dor, sendo a maioria relatos de casos ou estudos observacionais, sem intervenção ativa, ou sem grupo controle. CONCLUSÃO: Ainda há poucos estudos clínicos, randomizados e controlados avaliando doses eficazes, vias e intervalo de administração, interação farmacológica com opioides ou entre os diversos canabinoides, interação com analgésicos adjuvantes, lesões potenciais no contexto do uso a longo prazo e fatores individuais que predisponham ao uso indiscriminado dos canabinoides.

12.
Biomedicines ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36359369

RESUMO

Due to its high prevalence, infertility has become a prominent public health issue, posing a significant challenge to modern reproductive medicine. Some clinical conditions that lead to female infertility include polycystic ovary syndrome (PCOS), endometriosis, and premature ovarian failure (POF). Follicular fluid (FF) is the biological matrix that has the most contact with the oocyte and can, therefore, be used as a predictor of its quality. Volatilomics has emerged as a non-invasive, straightforward, affordable, and simple method for characterizing various diseases and determining the effectiveness of their current therapies. In order to find potential biomarkers of infertility, this study set out to determine the volatomic pattern of the follicular fluid from patients with PCOS, endometriosis, and POF. The chromatographic data integration was performed through solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC-MS). The findings pointed to specific metabolite patterns as potential biomarkers for the studied diseases. These open the door for further research into the relevant metabolomic pathways to enhance infertility knowledge and diagnostic tools. An extended investigation may, however, produce a new mechanistic understanding of the pathophysiology of the diseases.

13.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297647

RESUMO

Despite the great progress over the past few decades in both the diagnosis and treatment of a great variety of human cancers, glioblastoma remains the most lethal brain tumor. In recent years, cancer gene therapy focused on non-viral vectors which emerged as a promising approach to glioblastoma treatment. Transferrin (Tf) easily penetrates brain cells of the blood-brain barrier, and its receptor is highly expressed in this barrier and glioblastoma cells. Therefore, the development of delivery systems containing Tf appears as a reliable strategy to improve their brain cells targeting ability and cellular uptake. In this work, a cell-penetrating peptide (WRAP5), bearing a Tf-targeting sequence, has been exploited to condense tumor suppressor p53-encoding plasmid DNA (pDNA) for the development of nanocomplexes. To increase the functionality of developed nanocomplexes, the drug Temozolomide (TMZ) was also incorporated into the formulations. The physicochemical properties of peptide/pDNA complexes were revealed to be dependent on the nitrogen to phosphate groups ratio and can be optimized to promote efficient cellular internalization. A confocal microscopy study showed the capacity of developed complexes for efficient glioblastoma cell transfection and consequent pDNA delivery into the nucleus, where efficient gene expression took place, followed by p53 protein production. Of promise, these peptide/pDNA complexes induced a significant decrease in the viability of glioblastoma cells. The set of data reported significantly support further in vitro research to evaluate the therapeutic potential of developed complexes against glioblastoma.

14.
Vaccines (Basel) ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146638

RESUMO

Cervical cancer (CC) is a disease that affects many women worldwide, especially in low-income countries. The human papilloma virus (HPV) is the main causative agent of this disease, with the E6 and E7 oncoproteins being responsible for the development and maintenance of transformed status. In addition, HPV is also responsible for the appearance of cervical intraepithelial neoplasia (CIN), a pre-neoplastic condition burdened by very high costs for its screening and therapy. So far, only prophylactic vaccines have been approved by regulatory agencies as a means of CC prevention. However, these vaccines cannot treat HPV-positive women. A search was conducted in several databases (PubMed, Scopus, Web of Science, and ClinicalTrials.gov) to systematically identify clinical trials involving therapeutic vaccines against CIN 3. Histopathological regression data, immunological parameters, safety, DNA clearance, and vaccine efficacy were considered from each selected study, and from the 102 articles found, 8 were selected based on the defined inclusion criteria. Histopathological regression from CIN 3 to CIN < 1 was 22.1% (95% CI: 0.627−0.967; p-value = 0.024), showing a vaccine efficacy of 23.6% (95% CI; 0.666−0.876; p-value < 0.001). DNA clearance was assessed, and the risk of persistent HPV DNA was 23.2% (95% CI: 0.667−0.885; p-value < 0.001). Regarding immunological parameters, immune responses by specific T-HPV cells were more likely in vaccinated women (95% CI: 1.245−9.162; p-value = 0.017). In short, these studies favored the vaccine group over the placebo group. This work indicated that therapeutic vaccines are efficient in the treatment of CIN 3, even after accounting for publication bias.

15.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806268

RESUMO

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson's disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs' design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at -80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.


Assuntos
Catecol O-Metiltransferase , Líquidos Iônicos , Ânions , Catecol O-Metiltransferase/química , Colina/química , Estabilidade Enzimática , Humanos , Líquidos Iônicos/química
16.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740276

RESUMO

Polycystic ovary syndrome (PCOS) represents one of the leading causes of anovulatory infertility and affects 5% to 20% of women worldwide. Until today, both the subsequent etiology and pathophysiology of PCOS remain unclear, and patients with PCOS that undergo assisted reproductive techniques (ART) might present a poor to exaggerated response, low oocyte quality, ovarian hyperstimulation syndrome, as well as changes in the follicular fluid metabolites pattern. These abnormalities originate a decrease of Metaphase II (MII) oocytes and decreased rates for fertilization, cleavage, implantation, blastocyst conversion, poor egg to follicle ratio, and increased miscarriages. Focus on obtaining high-quality embryos has been taken into more consideration over the years. Nowadays, the use of metabolomic analysis in the quantification of proteins and peptides in biological matrices might predict, with more accuracy, the success in assisted reproductive technology. In this article, we review the use of human follicular fluid as the matrix in metabolomic analysis for diagnostic and ART predictor of success for PCOS patients.

17.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740499

RESUMO

Cervical cancer is the fourth leading cause of death in women worldwide, with 99% of cases associated with a human papillomavirus (HPV) infection. Given that HPV prophylactic vaccines do not exert a therapeutic effect in individuals previously infected, have low coverage of all HPV types, and have poor accessibility in developing countries, it is unlikely that HPV-associated cancers will be eradicated in the coming years. Therefore, there is an emerging need for the development of anti-HPV drugs. Considering HPV E6's oncogenic role, this protein has been proposed as a relevant target for cancer treatment. In the present work, we employed in silico tools to discover potential E6 inhibitors, as well as biochemical and cellular assays to understand the action of selected compounds in HPV-positive cells (Caski and HeLa) vs. HPV-negative (C33A) and non-carcinogenic (NHEK) cell lines. In fact, by molecular docking and molecular dynamics simulations, we found three phenolic compounds able to dock in the E6AP binding pocket of the E6 protein. In particular, lucidin and taxifolin were able to inhibit E6-mediated p53 degradation, selectively reduce the viability, and induce apoptosis in HPV-positive cells. Altogether, our data can be relevant for discovering promising leads for the development of specific anti-HPV drugs.

18.
Biomedicines ; 10(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35625727

RESUMO

Nucleic acid vaccines have been proven to be a revolutionary technology to induce an efficient, safe and rapid response against pandemics, like the coronavirus disease (COVID-19). Minicircle DNA (mcDNA) is an innovative vector more stable than messenger RNA and more efficient in cell transfection and transgene expression than conventional plasmid DNA. This work describes the construction of a parental plasmid (PP) vector encoding the receptor-binding domain (RBD) of the S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the use of the Design of Experiments (DoE) to optimize PP recombination into mcDNA vector in an orbital shaker. First, the results revealed that host cells should be grown at 42 °C and the Terrific Broth (TB) medium should be replaced by Luria Broth (LB) medium containing 0.01% L-arabinose for the induction step. The antibiotic concentration, the induction time, and the induction temperature were used as DoE inputs to maximize the % of recombined mcDNA. The quadratic model was statistically significant (p-value < 0.05) and presented a non-significant lack of fit (p-value > 0.05) with a suitable coefficient of determination. The optimal point was validated using 1 h of induction, at 30 °C, without the presence of antibiotics, obtaining 93.87% of recombined mcDNA. Based on these conditions, the production of mcDNA was then maximized in a mini-bioreactor platform. The most favorable condition obtained in the bioreactor was obtained by applying 60% pO2 in the fermentation step during 5 h and 30% pO2 in the induction step, with 0.01% L-arabinose throughout 5 h. The yield of mcDNA-RBD was increased to a concentration of 1.15 g/L, when compared to the orbital shaker studies (16.48 mg/L). These data revealed that the bioreactor application strongly incremented the host biomass yield and simultaneously improved the recombination levels of PP into mcDNA. Altogether, these results contributed to improving mcDNA-RBD biosynthesis to make the scale-up of mcDNA manufacture simpler, cost-effective, and attractive for the biotechnology industry.

19.
Vaccines (Basel) ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632404

RESUMO

We live on a planet marked by remarkable health disparities [...].

20.
Bioengineering (Basel) ; 9(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35621475

RESUMO

Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...